
 1

Dojo – The Only JavaScript Library
Compatible with The Closure Compiler

(other than the Closure Library, that is)

or

How to Use
the Closure Compiler in Advanced Mode

with the Dojo Toolkit
to Get Highly-Compact, Fully-Obfuscated,

Fully-Optimized Builds

Author: Stephen Chung (Stephen.Chung@intexact.com)

Last Edited: 2011-03-27

 2

Table of Contents

Preamble .. 4

Design Concept.. 4

Caveat... 4

Who is This For... 5

Why Closure Compiler... 5
The Catch... 6

The Special Build Process .. 7
Step 1: Invoking the special Build process... 7
Step 2: Constructing the Build profile .. 7
Step 3: Running the Compiler on the Build Output.. 8
Step 4: Debugging Builds ... 10
Step 5: Required “Externs”... 11

Watch-Out’s .. 16
Avoid names with “$”... 16
JsDoc’s.. 16
dojo._hasResource, dojo._loadedModules ... 17
dojo.provide .. 17
Properties accessed via string name.. 17
dojo.connect, this.connect, dojo.hitch, dojo.subscribe, this.subscribe 18
Dojo classes and dojo.declare... 19

Necessary Modifications to Dojo Build Scripts.. 22
Necessary Modifications to Dojo Core.. 23

Public functions missing argument type comments ... 23
Incorrect/incomplete argument type comments.. 23
Missing “var” keywords ... 25
Eliminate property accesses via string value .. 25
Other necessary code modifications ... 26

Necessary Modifications to Dijit’s... 27
Incorrect/incomplete argument type comments.. 27
Eliminate property accesses via string value .. 27
Dangerous use of “this” .. 27
Handle templated widgets... 28
Other necessary code modifications ... 29

Necessary Modifications to Dojox’s .. 31
Incorrect/incomplete argument type comments.. 31
Eliminate properties passed/created by string .. 31
Missing “var” keywords ... 32

Recommended Modifications to Dojo Core.. 33
Enable hard-coding of browser sniffing results.. 33
Eliminate top-level aliases .. 34
Eliminate property accesses via string value .. 35

 3

Recommended Modifications to Dijit’s... 37
Eliminate top-level aliases .. 37
Remove wrapper closures... 37

Recommended Modifications to dojox.mobile ... 38
Eliminate top-level aliases .. 38

Recommended Modifications to dojox.lang.functional ... 39
Eliminate top-level aliases .. 39
Handle dojox.lang.functional.lambda... 39

Recommended Modifications to dojox.gfx and dojox.color.. 41
Eliminate top-level aliases .. 41
Eliminate dojo.getObject calls .. 42
Change named functions in wrapper closure to local variables.. 42
Eliminate property accesses via string value .. 42

Recommended Modifications to dojox.charting .. 45
Eliminate top-level aliases .. 45
Eliminate property accesses via string value .. 45
Other recommended code modifications .. 47

Going All The Way – Flattening the “dojo” Namespace.. 48

 4

Preamble

This document is the result of a series of experiments by the author to use the Closure Compiler
in Advanced Optimizations mode with the Dojo Toolkit, version 1.6.

The Dojo Toolkit is not written in the (extremely restrictive) style that takes full benefits of the
Closure Compiler. However, the gap can be bridged quite successfully via a number of tricks and
hacks, mostly in modifying the standard Build script.

The author has deployed a medium-scale mobile web application targeted for iPad’s and Android
tablets. Through this experience, the author believes that the Closure Compiler (in Advanced
mode) provides performance and other benefits that should not be ignored, especially by mobile
web applications.

On the other hand, however, the massive infrastructure provided by the Dojo Toolkit is also too
good to ignore. In a perfect world, there should be a way to seamlessly marry the two. This
writing is an on-going documentation of this attempt.

Design Concept

There are a few central concepts when designing the following process of using the Dojo Toolkit
with the Closure Compiler:

• The process must make as few changes to the Dojo Toolkit as possible – this is an
attempt to use the Dojo Toolkit primarily, with the Closure Compiler secondarily, not the
other way round

• The programmer must be able to use all features in the Dojo Toolkit without much
restrictions, and in pretty much the same way as normal – although he/she must take
special concern regarding the restrictions of the Closure Compiler in his/her own code

• Any program written must run without change in the raw without being compiled by the
Closure Compiler

• The programmer must be able to produce a normal Dojo Build (without using the Closure
Compiler) and such build must also run without change

Caveat

The author’s application only uses a small subset of the Dojo Toolkit’s capabilities – e.g. most of
Dijit isn’t used due to it being a mobile application. It uses dojox.mobile quite extensively,
though. The application is also built with the webkitMobile flag turned on, essentially
eliminating large sections of code related to other browsers.

 5

The author does not claim to have found every last place in the Dojo Toolkit source tree that
must be modified, nor does he claim that the procedure outlined in this document suffices in
getting every web program to work with the Closure Compiler.

The reader is warned that a fair bit of experimentation, debugging and tweaking will be needed
for any new web project that uses both the Dojo Toolkit and the Closure Compiler in Advanced
mode. Nevertheless, this document should provide strong guidance towards solving some of the
major recurring issues.

In addition, several tricks and hacks to make this work depends on the fact that the Closure
Compiler always converts the same name to the same mangled name, even though they may be
properties of different classes. In other words, experimental compilation flags such as
disambiguateProperties and ambiguateProperties are not supported.

Contributions back to this document are strongly encouraged and should be sent to the author’s
email address.

Who is This For

This document is for programmers who have a capable understanding of the Closure Compiler in
Advanced Optimizations mode, who have successfully used the compiler in Advanced mode for
other, non-Dojo-based projects, and who would now like to do the same for Dojo-based projects.

The reader is also assumed to have a working understanding of how to invoke the Dojo Build
process to make merged builds and multiple layer files.

Why Closure Compiler

Why is the Closure Compiler beneficial to projects based on the Dojo Toolkit? In general, the
Closure Compiler in Simple Optimizations mode performs no better than current general top-of-
the-line JavaScript compressors (e.g. Uglify), and there really is no compelling reason to use it
with the Dojo Toolkit. The standard Dojo Build system has an option to use the Closure
Compiler in Simple mode for compression.

However, in Advanced Optimizations mode, the Closure Compiler offers a whole range of
additional benefits:

• Syntax checking eliminates many typo and careless bugs – a task also fulfilled by using
JavaScript linters.

• Type checking eliminates many obscure argument bugs – although it can also be a pain to
use sometimes; purists will say that it takes away some of the flexibility of JavaScript…

 6

• Dead code removal – smaller downloads, higher performance – although this is actually
less of a potential benefit for heavily-modularized libraries like Dojo, and Dojo Core
functions contain substantial amounts of cross-calling to prevent much dead code
removal, and user code should not have much dead code anyway…

• Renaming of all properties and variables – smaller downloads, superior obfuscation –
pretty-print a compressed JavaScript file and you can figure out its logic based on the un-
mangled public property/function names; pretty-print a Closure-compiled JavaScript file
and it is really difficult to figure out anything (for example, even the top namespace
objects “dojo”, “ dijit” and “dojox” can be removed).

• Functions and constants in-lining – higher performance, superior obfuscation. Another
major benefit is that this enables writing highly configurable enterprise software systems,
for example multiple layers of factory abstractions and dependency injection driven by a
configuration/setup file and the ability to produce “optimized” builds for each particular
config with the Compiler automatically unrolling all the abstraction layers via in-lining.

• Flattening of namespaces – higher performance, especially on mobile devices.

• Virtualization of prototype methods – higher performance, especially on mobile devices.

The Catch

As with any good thing, there are costs. The programmer must be ultra careful in order to run
Advanced Mode compilations. It is not the purpose of this document to outline the list of
extremely strict requirements. However, most difficulties can be resolved via:

• A special build process – a new command-line flag is added to the Dojo Build script
called "closure” which, when set to true, will make a range of necessary optimizations
and output build files in a special format that is capable of being processed by the Closure
Compiler. This is the “easy” solution as it is reasonably automatic.

• Specially marked comments that indicate to the Dojo Build script that special care should
be taken. This is especially necessary when using “dojo.declare” to declare new classes
– a “property names map” must be created by the special Build script in order to convert
un-mangled property names (used in get/set calls) to mangled names.

• An “extern” file (used by the Closure Compiler) that lists out the property names that
should not be renamed. This list should be as short as possible for obvious reasons, but it
is not always possible to completely eliminate it because the Dojo Toolkit is sprinkled
with property accesses via string names – a huge no-no for the Closure Compiler.

 7

The Special Build Process

The special Build process is responsible for converting normal Dojo-style source code files into a
format acceptable to the Closure Compiler.

Step 1: Invoking the special Build process

Do either of the following:

• In your Build profile, specify the following parameter under dependencies:
 closure: true,

• Use the following command-line parameter when running the build script:

 closure=true

A sample command line executed on Windows:

build profileFile=profile.js action=release closure=true

Step 2: Constructing the Build profile

All dojo, dijit, dojox and user code must be separated into different layers. In particular, the
dojo and dijit layers must be separated due to i18n bundle resources.

Separating the code base into different layers make it easier to use different Closure settings for
each layer – for example, user code should have full type-checking turned on, but not for Dojo
Toolkit layers (otherwise there will be a large number of type errors).

For each Dojo Toolkit layer, include a copyright file, which should contain the following:

/**
 * @fileoverview
 * @suppress {checkTypes}
 */

Doing the above will prevent the Closure Compiler from doing type-checking of these layer files.
Otherwise, if type-checking is turned on, there will be a lot of errors from the Dojo Toolkit.

Include the file closure.js in the first user code layer (first layer only), before any user code – it
contains a number of necessary changes (especially with regards to property names mapping) to
the Dojo Toolkit.

 8

For a detailed map of the layers structure, see the next section.

Step 3: Running the Compiler on the Build Output

The Dojo Build process creates a number of merged JavaScript files, one for each layer. They are
named: <layer>.js.uncompressed.js. The file dojo.js.uncompressed.js always exists.

It is necessary that the uncompressed version be fed to the Closure Compiler instead because
some optimizations made by other optimizers may conflict with the Closure Compiler. Pass each
uncompressed layer file, in the correct order, to the “--js” parameter of the Closure Compiler.
The reader is assumed to understand how to run the Closure Compiler with its numerous
command-line options.

The Dojo Build process loads the i18n bundle resources at the end of any layer that uses i18n
(which should be the dijit layer). Therefore, all i18n bundle resource files (usually under the nls
subdirectory) should be included before the dijit layer ends, and the only way to do this is to
separate dojo and dijit into different layers.

Special code must be added to the end of the dojo layer to handle certain i18n objects, because
the Dojo Build process does not touch the i18n bundle resource files, and the i18n bundle
resources will assume these objects are provided for their declarations:

i18n Code Set

dojo.provide("dojo.cldr.nls.number"); // If using dojo.number
dojo.provide("dojo.cldr.nls.gregorian"); // If using dojo.date.locale

dojo.provide("dijit.nls.loading"); // If using dijit
dojo.provide("dijit.nls.common"); // If using dijit

Certain Dojo Core modules (e.g. dojo.number) depend on i18n, so they must be included after
the dojo layer (i.e. in the dijit layer instead). How to know whether any Dojo Core module
depends on i18n? After building the project and running it with the layer files, there will be i18n-
related errors (e.g. not finding a particular resource bundle) if there is a module that depends on
i18n which is included in the dojo layer.

 9

As a result, the Dojo Build layers (bracketed in thick borders) and Closure Compiler --js loading
order should be:

Copyright file with @suppress

Dojo Core

i18n Code Set

dojo layer

i18n bundle resource files i18n section

Copyright file with @suppress

Dojo modules that require i18n

Dijit modules

dijit layer

Copyright file with @suppress

Dojox modules
dojox layer

Copyright file with @preserve

closure.js

User Code

1st user layer

User Code

User Code
user layer(s)

A sample command line executed on Windows:

java -jar compiler.jar
 --compilation_level ADVANCED_OPTIMIZATIONS
 --warning_level VERBOSE
 --create_name_map_files true
 --formatting PRINT_INPUT_DELIMITER
 --jscomp_error=checkTypes
 --jscomp_error=accessControls
 --externs externs.js ���� Externs file
 --js dojo.js.uncompressed.js
 --js nls\dijit_en.js
 --js nls\dijit_en_us.js
 --js nls\dijit_en_gb.js ���� Add all necessary i18n bundle files
 --js dijit.js.uncompressed.js
 --js dojox.js.uncompressed.js
 --js user1.js.uncompressed.js ���� The first user layer should include closure.js
 --js user2.js.uncompressed.js ���� User layer files
 --js user3.js.uncompressed.js
 --js_output_file output.js

 10

Step 4: Debugging Builds

When things don’t work – and it never works 100% on the first try unless you are either very
good or very lucky – there are a few debugging steps that should take care of 90% of the
problems:

• Rerun the Closure Compiler with the following command line options:
 --formatting PRETTY_PRINT
 --debug true

• Rerun the program, note down the line number of the error and the stack trace. In 90% of
the case, it will be a “property not found” error – something has been renamed by the
Closure Compiler which is eventually accessed via string name. Turning on “debug
mode” allows you to pin-point the property that is the culprit.

• Rerun the Closure Compiler with --formatting PRETTY_PRINT but --debug false,
open the output file (which should be pretty printed but mangled) and search for “" in”
(space between), “["”, “ "]”, and “hasOwnProperty("” – these usually indicate places
where properties are accessed via string names, especially when the quoted string is a
property name that is not mangled (they should be easy to spot when everything else is
renamed to two-character names).

• If this fails to identify the source the problem, you just have to debug it like any normal
programming error.1

1 This may get frustrating for users new to the Closure Compiler. The author has faced a case that, when using an
external third-party library, the object passed into addEventHandler was discovered to have been completely
removed by the Closure Compiler as dead code because it thinks that the object’s only property, handleEvent, is
never used! Of course, this reflects poorly on the people maintaining the Closure Compiler, but we have to take what
we get…

 11

Step 5: Required “Externs”

The following is a list of “externs” required by the Closure Compiler. This is by no means an
exhaustive list. There may be other symbols used throughout the Dojo Toolkit code base that
requires adding externs.

// Since HTML attributes are mapped to Dijit properties CASE-INSENSITIVE, we need to
// make sure that no property is renamed by the Closure Compiler to a name that differs
// from some HTML attribute by case only!

// In practice, we only need to consider up to two-character attribute names (since the
// Closure Compiler will always try to use the shortest variable names and two
// characters usually suffice. Which means the only danger is really "id"!)

// Similarly, be careful with custom attribute names like “to”, “at” etc. if they will be loaded
// into a custom Dijit.

var closureIdExterns =
{

Id: null, // If this is a mangled name, it will conflict with “id” in an HTML node
ID: null, // If this is a mangled name, it will conflict with “id” in an HTML node
iD: null // If this is a mangled name, it will conflict with “id” in an HTML node

};

// Redundant DOM global externs as "window" may not be the global object

var closureDomExterns =
{

location: null,
console: null,
scroll: null,
scrollBy: null,
scrollTo: null,
resizeTo: null,
resizeBy: null,
load: null

};
var Components = { // Fire-Fox, only to prevent undefined object error
 classes: null,
 interfaces: null,
 mozIJSSubScriptLoader: null
};
var Jaxer = null; // Jaxer, only to prevent undefined object error

// RequireJS (if used)

var define = null;
var require = null;
var currentModule = null;

 12

// HTML5 externs (if used)

var localStorage = null;
var JSON = null;

// Externs for WebKit-specific styles (if used)

var closureWebKitExterns =
{
 webkitAnimation: null,
 webkitAnimationDelay: null,
 webkitAnimationDirection: null,
 webkitAnimationDuration: null,
 webkitAnimationFillMode: null,
 webkitAnimationIterationCount: null,
 webkitAnimationName: null,
 webkitAnimationPlayState: null,
 webkitAnimationTimingFunction: null,
 webkitAppearance: null,
 webkitBackfaceVisibility: null,
 webkitBackgroundClip: null,
 webkitBackgroundComposite: null,
 webkitBackgroundOrigin: null,
 webkitBackgroundSize: null,
 webkitBorderBottomLeft: null,
 webkitBorderBottomRight: null,
 webkitBorderHorizontalSpacing: null,
 webkitBorderImage: null,
 webkitBorderRadius: null,
 webkitBorderTopLeft: null,
 webkitBorderTopRight: null,
 webkitBorderVerticalSpacing: null,
 webkitBoxAlign: null,
 webkitBoxDirection: null,
 webkitBoxFlex: null,
 webkitBoxFlexGroup: null,
 webkitBoxLines: null,
 webkitBoxOrdinalGroup: null,
 webkitBoxOrient: null,
 webkitBoxPack: null,
 webkitBoxReflect: null,
 webkitBoxShadow: null,
 webkitBoxSizing: null,
 webkitColumnBreakAfter: null,
 webkitColumnBreakBefore: null,
 webkitColumnBreakInside: null,
 webkitColumnCount: null,
 webkitColumnGap: null,
 webkitColumnRule: null,
 webkitColumnRuleColor: null,
 webkitColumnRuleStyle: null,
 webkitColumnRuleWidth: null,
 webkitColumns: null,
 webkitColumnWidth: null,

 13

 webkitDashboardRegion: null,
 webkitLineBreak: null,
 webkitMarginBottomCollapse: null,
 webkitMarginCollapse: null,
 webkitMarginStart: null,
 webkitMarginTopCollapse: null,
 webkitMarquee: null,
 webkitMarqueeDirection: null,
 webkitMarqueeIncrement: null,
 webkitMarqueeRepetition: null,
 webkitMarqueeSpeed: null,
 webkitMarqueeStyle: null,
 webkitMask: null,
 webkitMaskAttachment: null,
 webkitMaskBoxImage: null,
 webkitMaskClip: null,
 webkitMaskComposite: null,
 webkitMaskImage: null,
 webkitMaskOrigin: null,
 webkitMaskPosition: null,
 webkitMaskPositionX: null,
 webkitMaskPositionY: null,
 webkitMaskRepeat: null,
 webkitMaskSize: null,
 webkitNbspMode: null,
 webkitPaddingStart: null,
 webkitPerspective: null,
 webkitPerspectiveOrigin: null,
 webkitRtlOrdering: null,
 webkitTapHighlightColor: null,
 webkitTextFillColor: null,
 webkitTextSecurity: null,
 webkitTextSizeAdjust: null,
 webkitTextStroke: null,
 webkitTextStrokeColor: null,
 webkitTextStrokeWidth: null,
 webkitTouchCallout: null,
 webkitTransform: null,
 webkitTransformOrigin: null,
 webkitTransformOriginX: null,
 webkitTransformOriginY: null,
 webkitTransformOriginZ: null,
 webkitTransformStyle: null,
 webkitTransition: null,
 webkitTransitionDelay: null,
 webkitTransitionDuration: null,
 webkitTransitionProperty: null,
 webkitTransitionTimingFunction: null,
 webkitUserDrag: null,
 webkitUserModify: null,
 webkitUserSelect: null,
 animationName: null // Argument to webkitAnimationEnd handler
};

 14

// Dojo config

var djConfig = { Any config option used… };
var dojoConfig = { Any config option used… };

// dojo.declare – properties accessed via hasOwnProperty()

var closureDojoDeclareExterns =
{
 declaredClass: null, // dojo/_base/declare.js:27
 preamble: null // dojo/_base/declare.js:292
};

// Certain Dojo types

var closureDojoTypes =
{
 l:0, t:0, w:0, h:0, // bounding boxes
 r:0, g:0, b:0, a:0 // colors
};

// The following are needed for dojo.data.ItemFileRead/WriteStore (if used)

var closureDojoDataExterns =
{

identifier: null,
idAttribute: null,
label: null,
items: null,
failOk: false,
_type: null,
_value: null,
_reference: null

};

// The following are needed for dojo.Animation (if used)

var closureDojoAnimationExterns =
{

beforeBegin: null,
onBegin: null,
onAnimate: null,
onEnd: null,
onPlay: null,
onPause: null,
onStop: null,
play: null,
pause: null,
stop: null,
gotoPercent: null,
start: null,
end: null

};

 15

// The following are needed for dojo.xhr (if used)

var closureDojoXhrExterns =
{

postData: null,
putData: null,
rawBody: null

};

// The following are needed for Dijit (if used)

var closureDijitExterns =
{

node: null,
domNode: null. // Template attach point
containerNode: null, // Template attach point
x:0, y:0, width:0, height:0, // Rect
_stateClasses:null // dijit._CssStateMixin

};

// The following are needed for dijit.contentPane (if used)

var closureDijitContentPaneExterns =
{

onContentError: null, // Error handlers, accessed by name
onDownloadError: null // in dojo.html._ContentSetter

};

// The following is needed for i18n (each locale that is loaded must be included)
// i18n is particularly troublesome because it loads bundle resource files via text names

var closureDojoI18nExterns =
{

nls:
{
 loading: { en, en_us, en_gb, <locale>, <locale>, <locale> },
 common: { en, en_us, en_gb, <locale>, <locale>, <locale> }
}

};

 16

Watch-Out’s

Since most of the processing necessary to make the Dojo Toolkit compatible with the Closure
Compiler occurs in the Dojo Build process (via the Build script), there are a number of issues to
watch out for in addition to the normal (long) list of restrictions regarding writing JavaScript for
the Closure Compiler with Advanced Mode.

The Build script does simple text search-and-replace. It does not attempt to parse the JavaScript
source files. As a result, certain care must be observed to make sure that the necessary statements
are caught by the text search patterns.

Note: Anyone using the Closure Compiler in Advanced mode should always be careful

regarding what this frivolous Compiler will do to user code, so limitations and
restrictions are the norm.

Avoid names with “$”

The special Build process tries not to touch variables and properties with names that are not
made up of only letters, digits and the underscore character. Using the dollar sign “$” as part of a
variable/property name will likely bypass any processing.

Although there is no reason why the Build script cannot be written to handle names with “$”
characters, user code is strongly discouraged from using such names, as it makes it difficult to
recognize variables and properties with the Closure Compiler’s --debug mode turned on –
which in turn uses “$” characters to generate mangled names.1

JsDoc’s

All user code should use JsDoc’s for type-checking by the Closure Compiler.

Dojo-style argument type comments will be automatically converted by the special Build process
into JsDoc comments. However, this conversion is not perfect and the expressiveness of the
Dojo-style comments is less than that provided by JsDoc.

As the Dojo Toolkit is also experimenting with moving to JsDoc type annotations, it is
recommended that JsDoc’s be used from the beginning.

The special Build process automatically converts most Dojo-style type comments into JsDoc
comments.

1 Also, writing code sprinkled with dollar signs makes it looks more like jQuery or Prototype than Dojo – and if you
want your programs to look like jQuery code, you probably should be using jQuery anyway.

 17

dojo._hasResource, dojo._loadedModules

dojo._hasResource and dojo._loadedModules are removed by the special Build process –
more accurately ignored. This is to avoid creating unnecessary aliases.

User code is strongly discouraged from relying on them.

dojo.provide

All dojo.provide calls will be turned into goog.provide calls (which does the same thing, but
is internally in-lined by the Closure Compiler). Putting anything other than a string with a valid
scope made up only of letters, digits and the underscore character (i.e. no dollar sign “$”) will
bypass any processing.

Another way to bypass processing is to do it indirectly via a local variable:

var dp = dojo.provide;
dp(“foo.bar.Baz”); // This line will be bypassed

The Closure Compiler is very fussy about goog.provide, however. It will generate an error if a
symbol is provided twice – so overlapping dojo.provide’s are not supported.

Properties accessed via string name

Some user code has its own functions for creating connections, which in turn calls
dojo.connect or this.connect. For example, the following:

function myConnect (obj, evt, scope, method) {
 dojo.connect(obj, evt, scope, method);
}
myConnect(foo, “bar”, this, “hello”); // This will not be processed

will not be processed because it does not match the strict patterns recognized by the special Build
process, and will cause a “property-not-found” error after the real methods “bar” and “hello”
are renamed by the Closure Compiler.

Whenever a user program must access a certain property via its string name, putting the
comment /*remap*/ in front of the text causes the special Build process to convert it into a call
to closureGetMappedPropertyName1, which then returns the mangled name. For example:

myConnect(foo, /*remap*/ “bar”, this, this.hello); // Recommend way to call

1 Don’t worry about such long function names. The Closure Compiler will shorten it to a one-character name.

 18

will be converted into:

myConnect(foo, closureGetMappedPropertyName({bar:null}), this, this.hello);

and the code will work fine. For most types of string-based property access, similar tactics
should also work. For example:

var prop = [“bar”, “Baz”, “hello”][index];
var value = foo[prop];

can be written as:

var prop;
switch (index) {
 case 0: prop = /*remap*/ “bar”; break;
 case 1: prop = /*remap*/ “Baz”; break;
 case 2: prop = /*remap*/ “hello”; break;
}
var value = foo[prop];

However, it cannot be written as:

var propnames = [“bar”, “Baz”, “hello”];
var prop = /*remap*/ propnames[index]; // WRONG!!!
var value = foo[prop];

The comment /*remap*/ must be followed immediately by a text string.

dojo.connect, this.connect, dojo.hitch,
dojo.subscribe, this.subscribe

Calls to dojo.hitch, dojo.connect, dojo.subscribe, this.connect (used in Dijit’s) and
this.subscribe (used in Dijit’s) are the primary culprits when using the Dojo Toolkit with the
Closure Compiler in Advanced mode. Handler functions are often passed by string name and the
event function is always passed by string name.

The special Build process takes care of converting most of these calls into the correct form for
processing by the Closure Compiler. For example:

dojo.connect(obj, “foo”, scope, “bar”);

will be converted to:

 19

dojo.connect(obj, closureGetMappedPropertyName({foo:null}), scope, scope.bar);

The special global function, closureGetMappedPropertyName, is used to map a property
name that has been mangled by the Closure Compiler into its original, un-mangled name, or vice
versa. This function, our primary workhorse, depends upon the fact that the Closure Compiler
always converts the same name to the same mangled version (see the Caveat section above).

The pattern used by the special Build process is not very intelligent. It does not parse the
JavaScript source code, but simply attempts to match arguments specified either as simple
variables and properties (made up only of letters, digits, the underscore character and dots) or
simple text strings. Anything more complicated with be bypassed, e.g.:

dojo.connect(obj, (happy ? “foo” : “boo”), scope, “bar”);
dojo.connect(obj[x], “foo”, scope, “bar”);
dojo.connect(obj, “foo”, scope, getMethodName(scope));

Another way to bypass processing is to do it indirectly via a local variable (other than “d” which
is automatically aliased to dojo):

var dc = dojo.connect;
dc(obj, “event”, scope, “method”); // This line will be bypassed

IMPORTANT!!!
The special Build process skips event names that are all lower-case and starting with “on”, or
names that are mixed-case and starting with “webkit”. For example, onmouseenter,
onchange, webkitAnimationEnd etc. will all be left alone, as the special Build process
assumes that they refer to normal DOM events. Therefore, avoid naming any user events in
such manner – always use the recommended Dojo-style: onChange, onMouseEnter etc.

Dojo classes and dojo.declare

Problem

Declaring classes should be done directly via dojo.declare. The special Build process takes
care of adding the correct JsDoc comments for type-checking purposes (so that the Closure
Compiler will not complain about trying to “new” a non-class object).

Dojo classes have special functionalities. In general, properties are read and set via getter/setter
functions (typically get and set); this is to enable ad hoc processing especially on the setter side.
Property values are read/set by passing the name of the property in text as the first argument to
get and set.

In addition, user-specified functions named _getXxxAttr and _setXxxAttr will automatically be
used as the getter and setter for the “xxx” property.

 20

Declaring a public property

Needless to say, such large-scale usage of string property names precludes the type of ad hoc
property name mapping via the /*remap*/ comment. The solution to this is to build a global
“property names map”1 which contains a one-to-one mapping of un-mangled (original) property
names to the mangled names provided by the Closure Compiler. The following syntax must be
strictly observed:

dojo.declare (“my.New.Class”, myBase, { // Base classes in an array also OK
 /*public*/ prop1: value, // Public property
 /*public*/ prop2: value, // Public property
 /*public*/ prop3: value, // Public property
 :
 _prop4: value, // Private use, not processed
 :

 method1: function (…) { … },
 method2: function (…) { … },
 method3: function (…) { … },
 :
});

The special comment /*public*/ is used to create the “property names map” for this class.
Mappings for getter/setter functions (e.g. _getXxxAttr, _setXxxAttr etc.) will also be included, if
they are used.

Any property (properties #1 to #3 in the example above) marked with a /*public*/ comment is
settable declaratively via HTML and automatically propagated into the class by the Dojo parser.
Any property not marked with /*public*/ (property #4 in the example above) is assumed to be
private, internal-use only. In order to use such a property with get and set, the /*remap*/
comment must be added before the text of the property name, e.g.:

widget.set(/*remap*/ “_prop4”, “Hello World”);

Global nature of property names mapping

A global property names map is built instead of one map per class. This is done mainly for
performance reasons. A by-product is that whenever a property in a class is marked with
/*public*/, it will be inserted into the global map object. Properties in other unrelated classes
that happen to have the same name as this property will automatically be covered as well, even
though they may not be marked with /*public*/.

In most usage, this is a good feature, as the get/set set of functions always expects unmangled
text property names, and the difference will be for a getter or setter to work as expected instead

1 The global variable is named closurePropertyNamesMap. Obviously, this name should be avoided in user code!

 21

of failing after compilation. However, for ease of maintenance and debugging, it is always
proper to include all the necessary /*public*/ in each public property.

Bypassing property names mapping

Any class declaration not matching this exact style will be bypassed. Therefore, a way to bypass
such processing is to simply do it indirectly via a local variable (other than “d” which is
automatically aliased to dojo):

var dc = dojo.declare;
dc(“foo.bar.Baz”, my.base, { … // This will be bypassed

Using closureAddPropertyNamesMap

Although it would be beneficial to add such comments to all Dijit class declarations, it is too
large a change to be considered practical. Therefore, none of the Dijit classes currently have
properties marked with /*public*/, so in order to use them declaratively “extern” symbols must
be provided to the Closure Compiler for each public property in order to avoid renaming.

Alternatively, the global function closureAddPropertyNamesMap1 defined in closure.js can
be used to add entries to the global property names map. The argument is a hash object with
unquoted names of properties mapping to the same names in quoted string format, for example to
add a “title” property to the property names map:

closureAddPropertyNamesMap({
 title: “title”,
 _getTitleAttr: “_getTitleAttr”, // ���� Needed if _getTitleAttr is defined
 _setTitleAttr: “_setTitleAttr” // ���� Needed if _setTitleAttr is defined
});

Standard mappings

In closure.js, some standard property names are already added:

dijit._WidgetBase: value, widgetId, disabled, hidden
dijit.layout.ContentPane: content

dijit.Dialog: duration, all template attach points and attach events
dijit.DialogUnderlay: dialogId

1 Don’t worry about such long function names. The Closure Compiler will shorten it to a one-character name.

 22

Necessary Modifications to Dojo Build Scripts

The following file is updated to add special processing for the Closure Compiler:

 dojo-toolkit/util/buildscripts/jslib/buildUtil.js

The following files are added:

 dojo-toolkit/util/buildscripts/jslib/dojoGuardStart_Closure
 dojo-toolkit/util/buildscripts/jslib/dojoGuardEnd_Closure

 23

Necessary Modifications to Dojo Core

The Dojo Toolkit is not written to satisfy the Closure Compiler’s many restrictions and
limitations. The special Build process takes care of most of these differences. Unfortunately,
some minimal changes still must be made to the Dojo source tree.

Public functions missing argument type comments

Notes: Correct argument type comments aid in type-checking of user code by the Closure
Compiler and should be fixed.

Function File & line number Comments
dojo.byId dojo/_base/html.js:50,76 Missing argument type comments.
dojo.create dojo/_base/html.js:1482 Missing argument type comments.
dojo.place dojo/_base/html.js:217 Missing argument type comments.

Incorrect/incomplete argument type comments

Notes: Some argument type comments are incorrect or incomplete. In particular, some
optional arguments are in the front of the arguments list, so the types of the arguments
following these optional arguments must be “promoted” in order to pass the Closure
Compiler’s type-check. This is most pronounced in dojo.connect for which many
arguments can be omitted.

Function File & line number Comments
dojo._getText dojo/_base/_loader/

hostenv_browser.js:253
Argument #2 should be marked
optional.

dojo.connect dojo/_base/connect.js:82 Handle optional arguments in the
front by promoting types from
the back to the front.

dojo.publish dojo/_base/connect.js:257 Argument #2 should be marked
optional.

dojo.subscribe dojo/_base/connect.js:225 Handle optional argument #2 by
promoting types from argument
#3 to #2.

dojo.Stateful dojo/Stateful.js:71 Handle optional argument #1 by
promoting types from argument
#2 to #1.

dojo.data.
 ItemFileWriteStore.

dojo/data/
 ItemFileWriteStore.js:

Typo on last argument – should
be “/*string*/”.

 24

 _removeReference
 FromMap

 464

 25

Missing “var” keywords

Notes: Some code is missing “var” keywords (or incorrectly putting a semi-colon at the end
of a line where it should be a comma), essentially making some variables global.
These are most likely mistakes – they are caught by the Closure Compiler’s type
variable scope checking.

Function File & line number Comments
dojo.data.
 ItemFileWriteStore.
 revert

dojo/data/
ItemFileWriteStore.js:
677

Missing “var” keyword for
variable “key” in for-in statement.

Eliminate property accesses via string value

Notes: These properties are accessed via string value in very few places, so it is worthwhile
to rewrite them.

Alternative: Provide externs to prevent renaming of these properties.

File & line number Comments
dojo/_base/browser.js:17
dojo/i18n.js: 245

Eliminate dojo[“require”] (which is a trick used to avoid
the loader loading the dependency) by defining a variable.

dojo/i18n.js:138,149 Eliminate dojo[“provide”] (which is a trick used to avoid
the loader loading the dependency) by defining a variable.

dojo/_base/html.js:1845 Eliminate references to “addClass” and “removeClass”
via an if-statement.

dojo/_base/Deferred.js:180 Eliminate references to “reject” and “resolve” via an if-
statement.

dojo/_base/Color.js:32-48 Change all property names of dojo.Color.named to
quoted versions – named colors are accessed by text name.

dojo/colors.js:94-225 Change all property names of the object to mixin with
dojo.Color.named to quoted versions – named colors are
accessed by text name.

 26

Other necessary code modifications

Function File & line number Comments
dojo.version.toString() dojo/_base/_loader/

bootstrap:258
“with” keyword is not supported by
the Closure Compiler.

dojo.parser.instantiate() dojo/parser.js:232,258 Support for property name maps.
“handlers” hash dojo/_base/xhr.js:

240-305
Change all property names to quoted
– because dojo.xhr* functions map
the handleAs parameter (passed as
string) to a property of this hash to
get a handler function.

dojo/parser.js line 232, 258:

Add support for property name maps by reverse-mapping the parameter’s short name to its
original full name in order to search for attributes with the full name.

This function is defined inside a closure, impossible to override later on – so it is necessary to
modify the source.

Starting from line 232 – Create a new “extra” object that contains the same parameters but in
mangled property names:

//>>excludeStart("closure", kwArgs.closure);
if (false)
//>>excludeEnd("closure");
{
 var newextra = {};
 for (var propname in extra) {
 newextra[closureMapPropertyName(clsInfo.cls, propname)] = extra[propname];
 }
 extra = newextra;
}

Starting from line 258 – Reverse-map the mangled property names of the class to the un-
mangled “full” name and check whether those attributes exist in the node:

var fullname = name;
//>>excludeStart("closure", kwArgs.closure);
if (false)
//>>excludeEnd("closure");
{ fullname = closureReverseMapPropertyName(clsInfo.cls, name); }
var item = name in mixin ? { value:mixin[name], specified:true } :
 attributes.getNamedItem(fullname);

 27

Necessary Modifications to Dijit’s

Using Dijit modules usual involves providing the correct extern symbols to the Closure Compiler
to avoid renaming of properties. This can either be done by scanning through the code tree, or by
trial-and-error (usually errors).

The author has not used most of dijit (outside of dijit.Dialog) to know what changes need to be
made (any volunteers?).

Incorrect/incomplete argument type comments

Notes: Some argument type comments are incorrect or incomplete.

Function File & line number Comments
dijit._Container.removeChild dijit/_Container.js:59 Argument should be

“Widget|int”

Eliminate property accesses via string value

Notes: These properties are accessed via string value in very few places, so it is worthwhile
to rewrite them.

Alternative: Provide externs to prevent renaming of these properties.

File & line number Comments
dijit/_base/popup.js: 240 Eliminate references to the event names “onExecute” and

“onCancel” by passing widget.onExecute ||
widget.onChange to the dojo.connect call.

dijit/_base/wai.js:31 Eliminate references to “addClass” and “removeClass”
by converting the call to dojo.toggleClass()

Dangerous use of “this”

Notes: When the Closure Compiler flattens a namespace, “this” no longer points to the
namespace object but to the global object instead.

The practice of depending on “this” to point to a namespace object when the function
is a library function (i.e. not a class) is not recommended as it may create obscure

 28

bugs when the function is passed as argument and the user does not remember that a
dojo.hitch is needed. There is also little documentation (outside of the sources) that
tells a user which function(s) require the namespace context and which do not.

Although impact to gzipped code size is negligible, replacing all “this” references
with the namespace object itself does have a slight performance hit as the JavaScript
engine must walk the namespace objects chain.

File & line number Comments
dijit/_base/popup.js:
120,140,149,171,179,189,195,221,
227,240-241,269,290,308,332,
350-355,371-372,381-387

Replace “this.” with “ dijit.popup.” to eliminate
the need for context. Beware that in a few places,
“this” is passed into a function as parameter (e.g.
dojo.connect).

dijit/_base/typematic.js Replace “this.” with “ dijit.typematic.” to
eliminate the need for context. When doing this via
a global search-and-replace, beware that some
functions have an argument called “_this” which
shouldn’t be replaced.

dijit/_base/wai.js:54 Replace “this.” with “ dijit.wai.” to eliminate the
need for context.

Handle templated widgets

Function File & line number Comments
dijit._Templated.prototype.
_attachTemplateNodes

dijit/_Templated.js:183-212 See below.

dijit/_Templated.js line 183-212

Widgets based on the dijit._Templated class generate properties based on the
“dojoAttachPoint” (or “data-dojo-attach-point”) and “dojoAttachEvent” (or
“data-dojo-attach-event”) attributes in the template HTML that must be mapped back to the
mangled name.

It is necessary that the function dijit._Templated.prototype._attachTemplateNodes be
changed in dijit._Templated instead of being overridden in closure.js because some dijit
classes mix in dijit._Templated but not as the main base class – which means that this function
gets copied to the new class’s prototype.

if(attachPoint){
 var point, points = attachPoint.split(/\s*,\s*/);
 while((point = points.shift())){
//>>excludeStart("closure", kwArgs.closure);

 29

 if (false)
//>>excludeEnd("closure");
 { point = closureMapPropertyName(this.constructor, point); }
 if(dojo.isArray(this[point])){
 this[point].push(baseNode);
 }else{
 this[point]=baseNode;
 }
 this._attachPoints.push(point);
 }
}

:
:

if(event.indexOf(":") != -1){
// oh, if only JS had tuple assignment
 var funcNameArr = event.split(":");
 event = trim(funcNameArr[0]);
 thisFunc = trim(funcNameArr[1]);
//>>excludeStart("closure", kwArgs.closure);
 if (false)
//>>excludeEnd("closure");
 {
 event = closureMapPropertyName(this.constructor, event);
 thisFunc = closureMapPropertyName(this.constructor, thisFunc);
 }
}else{
 event = trim(event);
//>>excludeStart("closure", kwArgs.closure);
 if (false)
//>>excludeEnd("closure");
 { event = closureMapPropertyName(this.constructor, event); }
}

Other necessary code modifications

File & line number Comments
dijit/_Widget.js:9-14 Avoid property renaming conflicts when widget is the global

object (i.e. window).

dijit/_Widget.js line 9-14

dojo._connect is attached a handler for deferred connect’s in widgets. There is a potential
conflict when the “widget” argument is passed the global object (i.e. window) and
“_onConnect” is mangled to a name that coincides with a mangled type name defined on the
global object (because the Closure Compiler renames variable/type names and properties
separately). Therefore, check for the global object – assuming that it never gets assigned an
_onConnect handler.

 30

dojo.connect(dojo, "_connect",
 function(/*dijit._Widget*/ widget, /*String*/ event){
 if(widget && widget !== dojo.global && dojo.isFunction(widget._onConnect)){
 widget._onConnect(event);
 }
 });

 31

Necessary Modifications to Dojox’s

The author only used a very limited subset of the dojox.mobile and dojox.charting modules,
as well as some modules that dojox.charting depends on (e.g. dojox.fgx, dojox.color,
dojox.lang). The rest are not yet scrubbed (e.g., dojox.fgx.canvas will require a lot of changes).
Any volunteers for all other dojox modules?

Incorrect/incomplete argument type comments

Notes: Some argument type comments are incorrect or incomplete.

Function File & line number Comments
dojox.gfx.normalizeColor dojox/gfx/_base.js:242 Argument should be

“dojo.Color|Array|string|
Object”

dojox.gfx.matrix.multiplyPoint
dojox.gfx.matrix.skewYgAt

dojox/gfx/matrix.js:
226,415

Last argument should be
marked optional like
“Number?”

Eliminate properties passed/created by string

File & line number Comments
dojox/mobile/scrollable.js:544,582 Properties accessed via string – replace with if-

statements conditioned on “dir”.
dojox/mobile/_base.js:532
dojox/gfx.js:78

Eliminate dojo[“require”] (which is a trick used
to avoid the loader loading the dependency) by
defining a variable.

dojox/mobile/_base.js:830-831 Events should be named “ontouchstart” and
“onmousedown” instead of versions without the
“on” prefix.

dojox/mobile/_base.js:859-860 Events should be named “ontouchmove” and
“ontouchend” instead of versions without the
“on” prefix.

 32

Missing “var” keywords

Notes: Some code, especially in dojox.charting, are missing “var” keywords (or
incorrectly putting a semi-colon at the end of a line where it should be a comma),
essentially making some variables global. These are most likely mistakes – they are
caught by the Closure Compiler’s type variable scope checking.

Function File & line number Comments
dojox.charting.axis2d.
 Default.labelTooltip
dojox.charting.plot2d.
 Base.performZoom
dojox.charting.plot2d.
 Grid.performZoom

dojox/charting/axis2d/
 Default.js:665
dojox/charting/plot2d/
 Base.js:110
dojox/charting/plot2d/
 Grid.js:138

Ending “;” should be “,” otherwise
the following line(s) do not define
local variable(s), making those
variable(s) global. Most likely
typos.

dojox.charting.plot2d.
 Pie._caculateLabelR

dojox/charting/plot2d/
 Pie.js:475

Missing “var” keyword on “j”
makes it a global variable.
Wrong spelling of function name.

dojox.charting.plot2d.
 Candlesticks.render
dojox.charting.plot2d.
 OHLC.render

dojox/charting/plot2d/
 Candlesticks.js:175
dojox/charting/plot2d/
 OHLC.js:168

Missing “var” keyword on
“shape” makes it a global
variable.

dojox.charting.plot2d.
 Spider.render

dojox/charting/plot2d/
 Spider.js:294

Missing “var” keyword on
“elem” makes it a global variable.

dojox.charting.Theme.
 getTick

dojox/charting/
 Theme.js:366

Missing “var” keyword on
“merge” makes it a global
variable.

dojox.gfx.shape.
 getTransformed
 BoundingBox

dojox/gfx/shape.js:107 Missing “var” keyword on “gm”
makes it a global variable.

dojox.gfx.matrix.invert dojox/gfx/matrix.js:210 Ending “,” should be “;” otherwise
the variable “M” is redefined in the
next line instead of being assigned
– most likely a typo.

dojox.gfx.gradutils.
 getColor

dojox/gfx/gradutils.js:
50,54

Ending “,” should be “;” otherwise
the variable “o” is redefined in the
next line instead of being assigned
– most likely a typo.

 33

Recommended Modifications to Dojo Core

Enable hard-coding of browser sniffing results

The Closure Compiler can eliminate dead code if it detects that certain variables are constants
and that such blocks of code can never be reached. This is especially useful in removing
browser-specific code sections.

For example, when compiling an application for WebKit-based mobile browsers, it customary to
run Dojo Build with the “webkitMobile” flag, which excludes a lot of IE-specific and FireFox-
specific code, in addition to removing some wrapper closures (but not all).

Running Dojo Build with the “closure” flag automatically creates the following global
constants:

/** @const */ var ISIE;
/** @const */ var ISFF;
/** @const */ var ISAIR;
/** @const */ var ISWEBKIT;
/** @const */ var ISOPERA;
/** @const */ var ISKHTML;
/** @const */ var ISCHROME;
/** @const */ var ISMAC;
/** @const */ var ISMOZ;
/** @const */ var ISMOZILLA;
/** @type {number} */ var ISSAFARI;

and replaces all references to dojo.isWebKit with ISWEBKIT, dojo.isIE with ISIE, dojo.isFF
with ISFF, etc. Therefore, all conditional statements depending on these browser-sniffing
variables will be replaced by accesses to the corresponding global constants.

The following section of code in dojo/_base/_loader/hostenv_browser.js is changed to
allow for hard-coding of these browser-detection variables:

//>>excludeStart("webkitMobile", kwArgs.webkitMobile);
if(dua.indexOf("Opera") >= 0){ d.isOpera = tv; }
if(dua.indexOf("AdobeAIR") >= 0){ d.isAIR = 1; }
d.isKhtml = (dav.indexOf("Konqueror") >= 0) ? tv : 0;
d.isWebKit = parseFloat(dua.split("WebKit/")[1]) || undefined;
d.isMac = dav.indexOf("Macintosh") >= 0;

if (false)
//>>excludeEnd("webkitMobile");
{
 d.isOpera = 0;
 d.isAIR = 0;

 34

 d.isWebKit = 1;
 d.isKhtml = 0;
 d.isMac = false;
 // We leave isChrome alone because it is also WebKit-based
}
d.isChrome = parseFloat(dua.split("Chrome/")[1]) || undefined;

This change, for example, replaces browser-sniffing calls with hard-coded values when
“webkitMobile” is defined for the Build. Other hard-coded browser constant sections can be
added in a similar way.

When the output source file is processed by the Closure Compiler, all sections of code
conditional upon dojo.isIE, dojo.isOpera, dojo.isFF etc. will automatically be removed as
dead code, while conditionals depending upon dojo.isWebKit will be in-lined.

Eliminate top-level aliases

Notes: Avoid passing in dojo, dijit or dojox as argument to any function. One such usage
creates an “alias” which prevents the Closure Compiler from optimizing anything
underneath those objects!

File & line number Comments
dojo/_base/_loader/bootstrap.js:
169-194

Dojo Core is used, so there is no need to reassign
dojo, dijit and dojox – which will prevent
namespace flattening.

Also, if dojo._scopeArgs is not used (should be
true in a build) it should be removed to avoid
creating aliases.

It is suggested that the entire block be removed
via an excludeStart/excludeEnd section.

dojo/_base/_loader/
 hostenv_browser.js:326

Remove the statement “d = null;” via an
excludeStart/excludeEnd section.

dojo/_base/html.js: 1079 Rewrite to remove “ … in d ? …” in order to avoid
blocking optimization of the entire dojo tree.

dojo/i18n.js Change code to avoid loading resource bundles
from the dojo._loadedModules hash – which is
eliminated by the special Build process to avoid
creating aliases.

dojo/_base/_loader/loader.js
dojo/_base/array.js:25

Replace dojo.mixin calls with individual
assignments to the dojo object – using
dojo.mixin creates an alias to dojo that prevents
flattening of the dojo namespace.

 35

dojo/_base/html.js line 1079:

dojo._isBodyLtr = function(){
 return (d._bodyLtr === undefined) ?
 d._bodyLtr = (d.body().dir || d.doc.documentElement.dir || "ltr")
 .toLowerCase() == "ltr" // Boolean
 : d._bodyLtr;
};

Eliminate property accesses via string value

Notes: Accessing properties via string values appear to be quite prevalent in dojox. In dojo,
surprisingly, there are only a few minor places.

File & line number Comments
dojo/_base/array.js:
255-264

For webkitMobile builds, several dojo array functions (e.g.
forEach) are remapped to native versions on the Array
prototype. Properties are added to the dojo object by string
names – dangerous but in this case harmless due to these
keywords being standard externs in the Closure Compiler.
However, none of these functions can be virtualized.

The whole block should be rewritten to assign these functions
directly to the properties of the dojo object.

dojo/_base/NodeList.js:
231-244

Some functions in NodeList map to their dojo counterparts.

The whole section should be rewritten to assign these
functions directly from the properties of the dojo object
instead of using string property access.

dojo/_base/array.js lines 255-264:

//>>excludeStart("webkitMobile", kwArgs.webkitMobile);
if (false)
//>>excludeEnd("webkitMobile");
{
["indexOf", "lastIndexOf", "forEach", "map", "some", "every", "filter"].forEach(
 function(name, idx){
 var proto = Array.prototype[name];

 var func = function(/*Array*/arr, /*Function|String*/callback, /*Object?*/thisObj){
 if((idx > 1) && (typeof callback == "string")){
 callback = new Function("item", "index", "array", callback);

 36

 }
 return proto.call(arr, callback, thisObj);
 };

 switch (idx) {
 case 0: dojo.indexOf = func; break;
 case 1: dojo.lastIndexOf = func; break;
 case 2: dojo.forEach = func; break;
 case 3: dojo.map = func; break;
 case 4: dojo.some = func; break;
 case 5: dojo.every = func; break;
 case 6: dojo.filter = func; break;
 }
 });
}

dojo/_base/NodeList.js lines 231-244

nlp.slice = function(){ return this._wrap(ap.slice.apply(this, arguments), this); };
nlp.splice = function(){ return this._wrap(ap.splice.apply(this, arguments), null); };
// concat should be here but some browsers with native NodeList have problems with it

// add array.js redirectors
nlp.indexOf=function(){return d.indexOf.apply(null,
 [this].concat(aps.call(arguments, 0))); };
nlp.lastIndexOf=function(){return d.lastIndexOf.apply(null,
 [this].concat(aps.call(arguments, 0))); };
nlp.every=function(){return d.every.apply(null,
 [this].concat(aps.call(arguments, 0))); };
nlp.some=function(){return d.some.apply(null,
 [this].concat(aps.call(arguments, 0))); };

// add conditional methods
nlp.attr = adaptWithCondition(dojo.attr, magicGuard);
nlp.style = adaptWithCondition(dojo.style, magicGuard);

// add forEach actions
nlp.connect = adaptAsForEach(dojo.connect);
nlp.addClass = adaptAsForEach(dojo.addClass);
nlp.removeClass = adaptAsForEach(dojo.removeClass);
nlp.replaceClass = adaptAsForEach(dojo.replaceClass);
nlp.toggleClass = adaptAsForEach(dojo.toggleClass);
nlp.empty = adaptAsForEach(dojo.empty);
nlp.removeAttr = adaptAsForEach(dojo.removeAttr);

 37

Recommended Modifications to Dijit’s

Eliminate top-level aliases

Notes: Avoid passing in dojo, dijit or dojox as argument to any function. One such usage
creates an “alias” which prevents the Closure Compiler from optimizing anything
underneath those objects!

File & line number Comments
dijit/_base/focus.js
dijit/_base/wai.js

Replace dojo.mixin calls with individual
assignments to the dijit object – using
dojo.mixin creates an alias to dijit that prevents
flattening of the dijit namespace.

Remove wrapper closures

Notes: The Closure Compiler will complain about an invalid type (when type-check is turned
on) if a class, declared via dojo.declare, is wrapped inside a wrapper closure
function.

File & line number Comments
dijit/_WidgetBase.js
dijit/_Widget.js

Remove wrapper closure around the class
declaration dojo.declare call via an
excludeStart/excludeEnd section.

 38

Recommended Modifications to dojox.mobile

Eliminate top-level aliases

File & line number Comments
dojox/mobile/scrollable.js:61-66 Remove (via an excludeStart/excludeEnd

section) the if-statement and everything in the
else clause because Dojo Core is used and there is
no need to reassign dojo and dojox – which will
prevent namespace flattening.

 39

Recommended Modifications to dojox.lang.functional

The dojox.lang.functional module contains functions that work with lambda expressions.
Modifications can be made to this module in order to flatten the dojox.lang.functional
namespace and facilitate removal of unused functions. Typically, only a small number of
functions under this namespace will be used in any application, so dead-code removal should
yield significant benefits.

Eliminate top-level aliases

File & line number Comments
dojox/lang/functional/array.js:21
dojox/lang/functional/curry.js:32
dojox/lang/functional/fold.js:24
dojox/lang/functional/lambda.js:86
dojox/lang/functional/listcomp.js:27
dojox/lang/functional/object.js:16
dojox/lang/functional/reversed.js:20
dojox/lang/functional/scan.js:23
dojox/lang/functional/sequence.js:17
dojox/lang/functional/util.js:11
dojox/lang/functional/zip.js:12

Replace dojo.mixin calls with individual
assignments to the dojox.lang.functional object
– using dojo.mixin creates an alias to
dojox.lang.functional that prevents flattening
of the dojox.lang.functional namespace.

dojox/lang/utils.js:18 Replace dojo.mixin calls with individual
assignments to the dojox.lang.utils object –
using dojo.mixin creates an alias to
dojox.lang.utils that prevents flattening of the
dojox.lang.utils namespace.

Handle dojox.lang.functional.lambda

dojox.lang.functional.lambda() creates a function based on text, with references to un-
mangled property names. Functions are cached for sharing – probably the whole rationale
behind this module. A few places in dojox (e.g. dojox.charting) creates functions using
dojox.lang.functional.lambda() (probably in order to utilize its caching features to avoid
creating too many function instances for drawing objects).

The key to make this work well with the Closure Compiler is to pre-insert function objects into
the cache with a new function, dojox.lang.functional.addToLambdaCache() – defined in
dojox/lang/functional/lambda.js.

 40

For example, the following lambda functions must be pre-inserted into the lambda cache in order
for the dojox.charting module to work properly (notice that they simply reflect the function
texts, but the Closure Compiler will process the function definitions but not the texts):

dojox.lang.functional.addToLambdaCache("item.purgeGroup()",
 function(item) { return item.purgeGroup(); });
dojox.lang.functional.addToLambdaCache("item.clear()",
 function(item) { return item.clear(); });
dojox.lang.functional.addToLambdaCache("item.destroy()",
 function(item) { return item.destroy(); });
dojox.lang.functional.addToLambdaCache("item.dirty = false",
 function(item) { return item.dirty = false; });
dojox.lang.functional.addToLambdaCache("item.dirty = true",
 function(item) { return item.dirty = true; });
dojox.lang.functional.addToLambdaCache("item.name",
 function(item) { return item.name; });

 41

Recommended Modifications to dojox.gfx and dojox.co lor

Eliminate top-level aliases

Notes: Avoid passing in dojo, dijit or dojox as argument to any function. One such usage
creates an “alias” which prevents the Closure Compiler from optimizing anything
underneath those objects!

File & line number Comments
dojox/gfx/gradutils.js:24 Replace “d.blendColors” with “ dojo.blendColors”

because it is inside a named function defined within a
closure, and the alias to dojo declared via “var d = dojo”
will be kept active.

dojox/gfx.js:55 For the Closure Compiler window/dojo.global and the
global object are different entities. Externs defined on the
global object will be renamed if accessed under
window/dojo.global.

“ if(dojo.global.CanvasRenderingContext2D)” should
be rewritten as: “if(CanvasRenderingContext2D)”

dojox/gfx /_base.js:149 Replace dojo.mixin calls with individual assignments to
the dojox.gfx object – using dojo.mixin creates an alias
to dojox.gfx that prevents flattening of the dojox.gfx
namespace.

dojox/gfx/matrix.js:47 Replace dojo.mixin calls with individual assignments to
the dojox.gfx.matrix object – using dojo.mixin creates
an alias to dojox.gfx.matrix that prevents flattening of the
dojox.gfx.matrix namespace.

dojox/color/_base.js:16
dojox/color/Colorspace.js:
518

Replace dojo.mixin calls with individual assignments to
the dojox.color object – using dojo.mixin creates an
alias to dojox.color that prevents flattening of the
dojox.color namespace.

dojox/color/Palette.js:290

Replace dojo.mixin calls with individual assignments to
the dojox.color.Palette object – using dojo.mixin
creates an alias to dojox.color.Palette that prevents
flattening of the dojox.color.Palette namespace.

 42

Eliminate dojo.getObject calls

dojo.getObject requires un-mangled type names and must be rewritten to avoid using string
names. Un-mangled versions of types may not exist if they have not been declared via
dojo.declare (which automatically creates both mangled and un-mangled types pointing to the
same constructor function). Un-mangled versions of objects and namespaces typically do not
exist unless explicitly created or provided in the externs file.

File & line number Comments
dojox/gfx.js:10 Rewrite “gfx = dojo.getObject(“dojox.gfx”, true)” call as

“dojo.getObject(“dojox.gfx”, true)” wrapped in an
excludeStart/excludeEnd section and “gfx = dojox.gfx”
afterwards.

Change named functions in wrapper closure to local variables

Whenever a local alias variable that shadows a global namespace, e.g. “var d = dojo” or
“var svg = dojox.gfx.svg” etc., is created within a wrapper function closure, we make certain
that the alias variable is not used within a named function declared inside that wrapper function
closure. Otherwise, that local variable becomes an “incomplete alias” and will prevent
optimizations of the entire tree underneath the global namespace.

File & line number Comments
dojox/gfx/svg.js The functions _createTextNode and _createFragment must

be changed to local variables instead of named functions
because they use “svg” which is an alias to “dojox.gfx.svg”.

dojox/gfx/fx.js The function getColorInterpol must be changed to a local
variable instead of a named function because it uses “g” which
is an alias to “dojox.gfx”.

Eliminate property accesses via string value

File & line number Comments
dojox/gfx/_base.js:
214

The whole section for dojox.gfx.getDefault should be
rewritten to assign objects prototype of the returned object
instead of using string property access.

dojox/gfx/_base.js:
367-376

dojox.gfx drawing functions are mapped to the corresponding
functions in the renderer.

 43

The whole section should be rewritten to assign these
functions directly to the properties of the dojox.gfx object
instead of using string property access.

dojox/gfx.js:72 Rewrite “gfx[gfx.renderer]” as
“dojo.getObject("dojox.gfx." + gfx.renderer)” to get the
renderer via un-mangled name.

dojox/gfx/path.js:204 Replace all properties of “_validSegments” with quoted
versions – they are used to match SVG path actions.

dojox/color/
 Palette.js:291

Replace palette generator names with quoted versions so that
they won’t be renamed – the names are usually passed in as a
string argument to dojox.color.Palette.generate().

dojox/gfx/_base.js line 214

//>>excludeStart("closure", kwArgs.closure);
 t.prototype = dojox.gfx["default" + type];

 if (false)
//>>excludeEnd("closure");
 {
 switch (type) {
 case "Path": t.prototype = dojox.gfx.defaultPath; break;
 case "Polyline": t.prototype = dojox.gfx.defaultPolyline; break;
 case "Rect": t.prototype = dojox.gfx.defaultRect; break;
 case "Ellipse": t.prototype = dojox.gfx.defaultEllipse; break;
 case "Circle": t.prototype = dojox.gfx.defaultCircle; break;
 case "Line": t.prototype = dojox.gfx.defaultLine; break;
 case "Image": t.prototype = dojox.gfx.defaultImage; break;
 case "Text": t.prototype = dojox.gfx.defaultText; break;
 case "TextPath": t.prototype = dojox.gfx.defaultTextPath; break;
 case "Stroke": t.prototype = dojox.gfx.defaultStroke; break;
 case "LinearGradient": t.prototype = dojox.gfx.defaultLinearGradient; break;
 case "RadialGradient": t.prototype = dojox.gfx.defaultRadialGradient; break;
 case "Pattern": t.prototype = dojox.gfx.defaultPattern; break;
 case "Font": t.prototype = dojox.gfx.defaultFont; break;
 }
 }

 44

dojox/gfx/_base.js lines 367-376

Note: dojox.gfx renderers are loaded via their un-mangled type names (declared via
dojo.declare)

switchTo: function(renderer){
 var ns = dojo.getObject("dojox.gfx." + renderer);
 if (ns) {
 dojox.gfx.Group = ns["Group"];
 dojox.gfx.Rect = ns["Rect"];
 dojox.gfx.Ellipse = ns["Ellipse"];
 dojox.gfx.Circle = ns["Circle"];
 dojox.gfx.Line = ns["Line"];
 dojox.gfx.Polyline = ns["Polyline"];
 dojox.gfx.Image = ns["Image"];
 dojox.gfx.Text = ns["Text"];
 dojox.gfx.Path = ns["Path"];
 dojox.gfx.TextPath = ns["TextPath"];
 dojox.gfx.Surface = ns["Surface"];

 switch (renderer) {
 case "svg": dojox.gfx.createSurface = dojox.gfx.svg.createSurface; break;
 case "canvas": dojox.gfx.createSurface = dojox.gfx.canvas.createSurface; break;
 case "vml": dojox.gfx.createSurface = dojox.gfx.vml.createSurface; break;
 case "silverlight": dojox.gfx.createSurface = dojox.gfx.silverlight.createSurface;
 break;
 }
 }
}

 45

Recommended Modifications to dojox.charting

Eliminate top-level aliases

File & line number Comments
dojox/charting/axis2d/
 common.js:33

Replace dojo.mixin calls with individual assignments to
the dojox.charting.axis2d.common object –
using dojo.mixin creates an alias to
dojox.charting.axis2d.common that prevents flattening
of the namespace.

dojox/charting/plot2d/
 common.js:10

Replace dojo.mixin calls with individual assignments to
the dc object (an alias to
dojox.charting.plot2d.common) – using dojo.mixin
creates an alias to dojox.charting.plot2d.common that
prevents flattening of the namespace.

dojox/charting/scaler/
 common.js:9

Replace dojo.mixin calls with individual assignments to
the dojox.charting.scaler.common object –
using dojo.mixin creates an alias to
dojox.charting.scaler.common that prevents flattening
of the namespace.

dojox/charting/scaler/
 linear.js:95

Replace dojo.mixin calls with individual assignments to
the dojox.charting.scaler.linear object –
using dojo.mixin creates an alias to
dojox.charting.scaler.linear that prevents flattening of
the namespace.

Eliminate property accesses via string value

File & line number Comments
dojox/charting/Theme.js:121-124 The whole section for

dojox.charting.Theme.constructor should be
rewritten to assign functions directly instead of
using string property access.

dojox/charting/Theme.js:174-182 The whole section for
dojox.charting.Theme.clone should be
rewritten to assign functions directly instead of
using string property access.

dojox/charting/Chart.js:
214-217, 269-272

Load axis type object with dojo.getObject
instead of property access via text string.

dojox/charting/axis2d/ Change all property names of createText to

 46

 common.js:37-62 quoted.
dojox/charting/plot2d/ Grid.js:91
dojox/charting/plot2d/ Base.js:48

Eliminate references to “_vAxis” and “_hAxis”
via an if-statement.

dojox/charting/Theme.js lines 121-124

his.chart = dojo.delegate(dojox.charting.Theme.defaultTheme.chart, kwArgs.chart);
this.plotarea = dojo.delegate(dojox.charting.Theme.defaultTheme.plotarea,
 kwArgs.plotarea);
this.axis = dojo.delegate(dojox.charting.Theme.defaultTheme.axis, kwArgs.axis);
this.series = dojo.delegate(dojox.charting.Theme.defaultTheme.series, kwArgs.series);
this.marker = dojo.delegate(dojox.charting.Theme.defaultTheme.marker, kwArgs.marker);

dojox/charting/Theme.js lines 174-182

if (this.clone) theme.clone = this.clone;
if (this.clear) theme.clear = this.clear;
if (this.next) theme.next = this.next;
if (this.skip) theme.skip = this.skip;
if (this.addMixin) theme.addMixin = this.addMixin;
if (this.post) theme.post = this.post;
if (this.getTick) theme.getTick = this.getTick;

dojox/charting/Chart.js lines 214-217

var axisTypeObj = dojo.getObject("dojox.charting.axis2d." + axisType);
if(!axisTypeObj){
 throw Error("Can't find axis: " + axisType + " - didn't you forget to dojo" +
 ".require() it?");
}
axis = new axisTypeObj(this, kwArgs);

dojox/charting/Chart.js lines 269-272

var plotTypeObj = dojo.getObject("dojox.charting.plot2d." + plotType);
if(!plotTypeObj){
 throw Error("Can't find plot: " + plotType + " - didn't you forget to dojo" +
 ".require() it?");
}
plot = new plotTypeObj(this, kwArgs);

 47

Other recommended code modifications

File & line number Comments
dojox/charting/
 DataChart.js:399

Native implementation of Array.prototype.map does not
iterate over sparse arrays, but dojo.map does.

Rewrite to create zero-padded array using a for loop instead of
using dojo.map (which maps to native
Array.prototype.map when webkitMobile is set).

 48

Going All The Way – Flattening the “dojo” Namespace

Flattening the “dojo” namespace itself has the benefit of dead-code removal of the entire code
tree under the “dojo” object, which yields additional savings.

On the other hand, however, Dojo Core is written in a very compact manner, with substantial
amounts of cross-calling among member functions in order to save space, so the savings from
dead-code removal may be less than expected (i.e. in terms of only 10-15KB minified).
Nevertheless, for small, quick projects that require only a very small subset of Dojo Core
functionality, this savings may still be significant.

Surprisingly, the modifications required are not many, reflecting on the highly modularized
nature of the Dojo Toolkit. They are outlined below.

WARNING!!!
Apply these modifications at your own risk. They are less than trivial changes (although none
of the changes are really significant) and must go through extensive testing to ensure that
they are really safe.

dojo/_base/declare.js & dojo/parser.js

Code in these two files define “var d = dojo” but use “d” inside named functions (anonymous
functions assigned to local variables are OK) that are defined inside a closure. Using an alias
variable inside a named function defined in a closure that captures that variable keeps the alias
alive and prevents optimization of everything under dojo.

All references to “d” inside a function that is defined within the wrapper closure must be
replaced with “dojo”.

dojo/_base/_loader/loader.js: 248 (dojo.addOnLoad)

dojo.addOnLoad does not appear to depend on “this” pointing to “dojo”. Pass null as first
argument to the apply/call function to avoid creating an alias to “dojo”.

dojo/_base/_loader/loader.js: 512 (dojo.platformRequire)

dojo._loadModule does not appear to depend on “this” pointing to “dojo”. Pass null as first
argument to apply in order to avoid creating an alias to “dojo”.

 49

dojo/_base/_loader/loader.js: 533 (dojo.requireIf)

dojo.require does not appear to depend on “this” pointing to “dojo”. Pass null as first
argument to apply in order to avoid creating an alias to “dojo”.

dojo/_base/_loader/bootstrap.js: 453 (dojo.eval)
dojo/_base/_loader/loader.js: 116 (dojo._loadUri)

Rewrite dojo[“eval”] as dojo.eval in order to avoid creating an alias to “dojo”.

dojo/_base/fx.js: 602

dojo.style does not appear to depend on “this” pointing to “dojo”. Pass null as first argument
to apply in order to avoid creating an alias to “dojo”.

dojo/_base/lang.js: 122 (dojo.hitch)

Nobody really calls dojo.hitch without a starting scope, expecting it to be “dojo” itself…

Pass null as first argument to apply in order to avoid creating an alias to “dojo”.

WARNING!!!
This will break strange code such as: dojo.hitch(null, “connect”, …)1 because it has more
than 2 arguments and thus gets passed to dojo._hitchArgs() which should then make the
scope object to be “dojo” when it sees the null. This will no longer happen after compilation
because the “dojo” object may be removed.

dojo/_base/lang.js: 230 (dojo.partial)

It is not necessary to call dojo.hitch with a context due to modifications in dojo/_base/lang.js.

Pass null as first argument to apply in order to avoid creating an alias to “dojo”.

dojo/_base/Deferred.js: 293, 297, 301

It is not necessary to call dojo.hitch with a context due to modifications in dojo/_base/lang.js.

1 However, if the user writes strange code like this (I can’t think of a valid use case where he/she cannot pass in
“dojo” as the first argument) and expects to compile this with the Closure Compiler under Advanced mode, he/she
absolutely deserves this to be done to him/her!

 50

Pass null as first argument to apply in order to avoid creating an alias to “dojo”.

dojo/_base/NodeList.js: 301

Rewrite to reference to “dojo.string” in order to avoid blocking optimization of everything
under dojo.string. Does this rewrite work:

var templateFunc = content.templateFunc;
try {
 if (!templateFunc) templateFunc = dojo.string.substitute;
} catch (e) {
 templateFunc = null;
}

dojo/parser.js: 80-82 (dojo.parser constructor)

dojo.connect is called on dojo.extend, creating an alias to “dojo”. Does this rewrite work:

//>>excludeStart("closure", kwArgs.closure);
 d.connect(d, "extend", function(){
 instanceClasses = {};
 });

 if (false)
//>>excludeEnd("closure");
 {
 var origfunc = d.extend;
 d.extend = function(/*Object*/ constructor, /*Object...*/ props) {
 origfunc.apply(null, arguments);
 instanceClasses = {};
 }
 }

dijit/_Widget.js: 9-14 (deferred connects)

Note: This code is already modified to avoid conflicts between a type defined on the global
object vs. the property _onConnect defined on a widget, which may be window.

dojo.connect is called on dojo._connect, creating an alias to “dojo”. Does this rewrite work:

//>>excludeStart("closure", kwArgs.closure);
dojo.connect(dojo, "_connect",
 function(/*dijit._Widget*/ widget, /*String*/ event){
 if(widget && window !== dojo.global && dojo.isFunction(widget._onConnect)){

 51

 widget._onConnect(event);
 }
 });

if (false)
//>>excludeEnd("closure");
{
 var origfunc = dojo._connect;
 dojo._connect = function(obj, event, context, method) {
 var retvalue = origfunc.apply(null, arguments);

 if(obj && obj !== dojo.global && dojo.isFunction(obj._onConnect)) {
 obj._onConnect(event);
 }

 return retvalue;
 };
}

dojox/charting/Element.js: 62 (this._events)

If item.shape is null, call dojo.connect instead.

(item.shape ? item.shape.disconnect : dojo.disconnect)(item.handle);

dojox/charting/axis2d/Default.js: 671, 677 (this._events)

Instead of setting the “shape” property to “dojo”, which will create an alias, set “shape” to
null (see modification to dojox/charting/Element.js above).

